Tuesday, October 7, 2008

BREAST CANCER

Breast cancer is a cancer that starts in the cells of the breast. Worldwide, breast cancer is the second most common type of cancer (10.4%; after lung cancer) and the fifth most common cause of cancer death (after lung cancer, stomach cancer, liver cancer, and colon cancer). Among women worldwide, breast cancer is the most common cause of cancer death. In 2005, breast cancer caused 502,000 deaths worldwide (7% of cancer deaths; almost 1% of all deaths). The number of cases worldwide has significantly increased since the 1970s, a phenomenon partly blamed on modern lifestyles in the Western world.

North American women have the highest incidence of breast cancer in the world. Among women in the U.S., breast cancer is the most common cancer and the second-most common cause of cancer death (after lung cancer). Women in the U.S. have a 1 in 8 (12.5%) lifetime chance of developing invasive breast cancer and a 1 in 35 (3%) chance of breast cancer causing their death. In 2007, breast cancer was expected to cause 40,910 deaths in the U.S. (7% of cancer deaths; almost 2% of all deaths).

In the U.S., both incidence and death rates for breast cancer have been declining in the last few years. Nevertheless, a U.S. study conducted in 2005 by the Society for Women's Health Research indicated that breast cancer remains the most feared disease, even though heart disease is a much more common cause of death among women.

Because the breast is composed of identical tissues in males and females, breast cancer also occurs in males. Incidences of breast cancer in men are approximately 100 times less common than in women, but men with breast cancer are considered to have the same statistical survival rates as women.

Breast cancers are described along four different classification schemes, or groups, each based on different criteria and serving a different purpose :

* Pathology - A pathologist will categorize each tumor based on its histological (microscopic anatomy) appearance and other criteria. The most common pathologic types of breast cancer are invasive ductal carcinoma, malignant cancer in the breast's ducts, and invasive lobular carcinoma, malignant cancer in the breast's lobules.
* Grade of tumor - The histological grade of a tumor is determined by a pathologist under a microscope. A well-differentiated (low grade) tumor resembles normal tissue. A poorly differentiated (high grade) tumor is composed of disorganized cells and, therefore, does not look like normal tissue. Moderately differentiated (intermediate grade) tumors are somewhere in between.
* Protein & gene expression status - Currently, all breast cancers should be tested for expression, or detectable effect, of the estrogen receptor (ER), progesterone receptor (PR) and HER2/neu proteins. These tests are usually done by immunohistochemistry and are presented in a pathologist's report. The profile of expression of a given tumor helps predict its prognosis, or outlook, and helps an oncologist choose the most appropriate treatment. More genes and/or proteins may be tested in the future.
* Stage of a tumour - The currently accepted staging scheme for breast cancer is the TNM classification :
o Tumor - There are five tumor classification values (Tis, T1, T2, T3 or T4) which depend on the presence or absence of invasive cancer, the dimensions of the invasive cancer, and the presence or absence of invasion outside of the breast (e.g. to the skin of the breast, to the muscle or to the rib cage underneath).
o Lymph Node - There are four lymph node classification values (N0, N1, N2 or N3) which depend on the number, size and location of breast cancer cell deposits in lymph nodes.
o Metastases - There are two metastatic classification values (M0 or M1) which depend on the presence or absence of breast cancer cells in locations other than the breast and lymph nodes (so-called distant metastases, e.g. to bone, brain, lung).


Early breast cancer can in some cases present as breast pain (mastodynia) or a painful lump. Since the advent of breast mammography, breast cancer is most frequently discovered as an asymptomatic nodule on a mammogram, before any symptoms are present. A lump under the arm or above the collarbone that does not go away may be present.

When breast cancer has invaded the dermal lymphatics - small lymph vessels of the skin, its presentation can resemble skin inflammation and thus is known as inflammatory breast cancer. In inflammatory breast cancer, the breast cancer is blocking lymphatic vessels and this can cause pain, swelling, warmth, and redness throughout the breast, as well as an orange peel texture to the skin referred to as peau d'orange. Although there may have been no previous signs of breast cancer and the cancer might be missed in screening mamograms, Inflammatory Breast Cancer is at least locally advanced at presentation (LABC) and Stage IIIB. Immediate staging tests are required to rule out distant metastes which might already be present making it Stage IV.

Changes in the appearance or shape of the breast can raise suspicions of breast cancer.

Another reported symptom complex of breast cancer is Paget's disease of the breast. This syndrome presents as eczematoid skin changes at the nipple, and is a late manifestation of an underlying breast cancer.

Most breast symptoms do not turn out to represent underlying breast cancer. Benign breast diseases such as fibrocystic mastopathy, mastitis, functional mastodynia, and fibroadenoma of the breast are more common causes of breast symptoms. The appearance of a new breast symptom should be taken seriously by both patients and their doctors, because of the possibility of an underlying breast cancer at almost any age.

Occasionally, breast cancer presents as metastatic disease, that is, cancer that has spread beyond the original organ. Metastatic breast cancer will cause symptoms that depend on the location of metastasis. More common sites of metastasis include bone, liver, lung, and brain. Unexplained weight loss can occasionally herald an occult breast cancer, as can symptoms of fevers or chills. Bone or joint pains can sometimes be manifestations of metastatic breast cancer, as can jaundice or neurological symptoms. Pleural effusions are not uncommon with metastatic breast cancer. Obviously, these symptoms are "non-specific," meaning they can also be manifestations of many other illnesses.

Epidemiological risk factors for a disease can provide important clues as to the etiology of a disease. The first work on breast cancer epidemiology was done by Janet Lane-Claypon, who published a comparative study in 1926 of 500 breast cancer cases and 500 control patients of the same background and lifestyle for the British Ministry of Health.

Today, breast cancer, like other forms of cancer, is considered to be the final outcome of multiple environmental and hereditary factors.

1. Lesions to DNA such as genetic mutations. Exposure to estrogen has been experimentally linked to the mutations that cause breast cancer. Beyond the contribution of estrogen, research has implicated viral oncogenesis and the contribution of ionizing radiation.
2. Failure of immune surveillance, which usually removes malignancies at early phases of their natural history.
3. Abnormal growth factor signaling in the interaction between stromal cells and epithelial cells, for example in the angiogenesis necessary to promote new blood vessel growth near new cancers.
4. Inherited defects in DNA repair genes, such as BRCA1, BRCA2 and p53.

Although many epidemiological risk factors have been identified, the cause of any individual breast cancer is often unknowable. In other words, epidemiological research informs the patterns of breast cancer incidence across certain populations, but not in a given individual. The primary risk factors that have been identified are sex, age, childbearing, hormones, a high-fat diet, alcohol intake, obesity, and environmental factors such as tobacco use and radiation.

No etiology is known for 95% of breast cancer cases, while approximately 5% of new breast cancers are attributable to hereditary syndromes. In particular, carriers of the breast cancer susceptibility genes, BRCA1 and BRCA2, are at a 30-40% increased risk for breast and ovarian cancer, depending on in which portion of the protein the mutation occurs.

Studies have found that "folate intake counteracts breast cancer risk associated with alcohol consumption" and "women who drink alcohol and have a high folate intake are not at increased risk of cancer." A prospective study of over 17,000 women found that those who consume 40 grams of alcohol (about 3-4 drinks) per day have a higher risk of breast cancer. However, in women who take 200 micrograms of folate (folic acid or Vitamin B9) every day, the risk of breast cancer drops below that of alcohol abstainers.

Folate is involved in the synthesis, repair, and functioning of DNA, the body’s genetic map, and a deficiency of folate may result in damage to DNA that may lead to cancer. In addition to breast cancer, studies have also associated diets low in folate with increased risk of pancreatic, and colon cancer.

Foods rich in folate include citrus fruits, citrus juices, dark green leafy vegetables (such as spinach), dried beans, and peas. Vitamin B9 can also be taken in a multivitamin pill.

Breast cancer is diagnosed by the examination of surgically removed breast tissue. A number of procedures can obtain tissue or cells prior to definitive treatment for histological or cytological examination. Such procedures include fine-needle aspiration, nipple aspirates, ductal lavage, core needle biopsy, and local surgical excision. These diagnostic steps, when coupled with radiographic imaging, are usually accurate in diagnosing a breast lesion as cancer. Occasionally, pre-surgical procedures such as fine needle aspirate may not yield enough tissue to make a diagnosis, or may miss the cancer entirely. Imaging tests are sometimes used to detect metastasis and include chest X-ray, bone scan, Cat scan, MRI, and PET scanning. While imaging studies are useful in determining the presence of metastatic disease, they are not in and of themselves diagnostic of cancer. Only microscopic evaluation of a biopsy specimen can yield a cancer diagnosis. Ca 15.3 (carbohydrate antigen 15.3, epithelial mucin) is a tumor marker determined in blood which can be used to follow disease activity over time after definitive treatment. Blood tumor marker testing is not routinely performed for the screening of breast cancer, and has poor performance characteristics for this purpose.

Breast cancer is staged according to the TNM system, updated in the AJCC Staging Manual, now on its sixth edition. Prognosis is closely linked to results of staging, and staging is also used to allocate patients to treatments both in clinical trials and clinical practice. The information for staging is as follows:

TX: Primary tumor cannot be assessed. T0: No evidence of tumor. Tis: Carcinoma in situ, no invasion T1: Tumor is 2 cm or less T2: Tumor is more than 2 cm but not more than 5 cm T3: Tumor is more than 5 cm T4: Tumor of any size growing into the chest wall or skin, or inflammatory breast cancer

NX: Nearby lymph nodes cannot be assessed N0: Cancer has not spread to regional lymph nodes. N1: Cancer has spread to 1 to 3 axillary or one internal mammary lymph node N2: Cancer has spread to 4 to 9 axillary lymph nodes or multiple internal mammary lymph nodes N3: One of the following applies:

Cancer has spread to 10 or more axillary lymph nodes, or Cancer has spread to the lymph nodes under the clavicle (collar bone), or Cancer has spread to the lymph nodes above the clavicle, or Cancer involves axillary lymph nodes and has enlarged the internal mammary lymph nodes, or Cancer involves 4 or more axillary lymph nodes, and tiny amounts of cancer are found in internal mammary lymph nodes on sentinel lymph node biopsy.

MX: Presence of distant spread (metastasis) cannot be assessed. M0: No distant spread. M1: Spread to distant organs, not including the supraclavicular lymph node, has occurred

Summary of stages:

* Stage 0 - Carcinoma in situ
* Stage I - Tumor (T) does not involve axillary lymph nodes (N).
* Stage IIA – T 2-5 cm, N negative, or T <2 cm and N positive.
* Stage IIB – T > 5 cm, N negative, or T 2-5 cm and N positive (< 4 axillary nodes).
* Stage IIIA – T > 5 cm, N positive, or T 2-5 cm with 4 or more axillary nodes
* Stage IIIB – T has penetrated chest wall or skin, and may have spread to < 10 axillary N
* Stage IIIC – T has > 10 axillary N, 1 or more supraclavicular or infraclavicular N, or internal mammary N.
* Stage IV – Distant metastasis (M)

Breast lesions are examined for certain markers, notably sex steroid hormone receptors. About two thirds of postmenopausal breast cancers are estrogen receptor positive (ER+) and progesterone receptor positive (PR+). Receptor status modifies the treatment as, for instance, only ER-positive tumors, not ER-negative tumors, are sensitive to hormonal therapy.

The breast cancer is also usually tested for the presence of human epidermal growth factor receptor 2, a protein also known as HER2, neu or erbB2. HER2 is a cell-surface protein involved in cell development. In normal cells, HER2 controls aspects of cell growth and division. When activated in cancer cells, HER2 accelerates tumor formation. About 20-30% of breast cancers overexpress HER2. Those patients may be candidates for the drug trastuzumab, both in the postsurgical setting (so-called "adjuvant" therapy), and in the metastatic setting.

The mainstay of breast cancer treatment is surgery when the tumor is localized, with possible adjuvant hormonal therapy (with tamoxifen or an aromatase inhibitor), chemotherapy, and/or radiotherapy. At present, the treatment recommendations after surgery (adjuvant therapy) follow a pattern. This pattern is subject to change, as every two years, a worldwide conference takes place in St. Gallen, Switzerland, to discuss the actual results of worldwide multi-center studies. Depending on clinical criteria (age, type of cancer, size, metastasis) patients are roughly divided to high risk and low risk cases, with each risk category following different rules for therapy. Treatment possibilities include radiation therapy, chemotherapy, hormone therapy, and immune therapy.

In planning treatment, doctors can also use PCR tests like Oncotype DX or microarray tests like MammaPrint that predict breast cancer recurrence risk based on gene expression. In February 2007, the MammaPrint test became the first breast cancer predictor to win formal approval from the Food and Drug Administration. This is a new gene test to help predict whether women with early-stage breast cancer will relapse in 5 or 10 years, this could help influence how aggressively the initial tumor is treated.

A prognosis is the medical team's "best guess" in how cancer will affect a patient. There are many prognostic factors associated with breast cancer: staging, tumour size and location, grade, whether disease is systemic (has metastasized, or traveled to other parts of the body), recurrence of the disease, and age of patient.

Stage is the most important, as it takes into consideration size, local involvement, lymph node status and whether metastatic disease is present. The higher the stage at diagnosis, the worse the prognosis. Larger tumours, invasiveness of disease to lymph nodes, chest wall, skin or beyond, and aggressiveness of the cancer cells raise the stage, while smaller tumours, cancer-free zones, and close to normal cell behaviour (grading) lower it.

Grading is based on how cultured biopsied cells behave. The closer to normal cancer cells are, the slower their growth and a better prognosis. If cells are not well differentiated, they appear immature, divide more rapidly, and tend to spread. Well differentiated is given a grade of 1, moderate is grade 2, while poor or undifferentiated is given a higher grade of 3 or 4 (depending upon the scale used).

Younger women tend to have a poorer prognosis than post-menopausal women due to several factors. Their breasts are active with their cycles, they may be nursing infants, and may be unaware of changes in their breasts. Therefore, younger women are usually at a more advanced stage when diagnosed.

The presence of estrogen and progesterone receptors in the cancer cell, while not prognostic, is important in guiding treatment. Those who do not test positive for these specific receptors will not respond to hormone therapy.

Likewise, HER2/neu status directs the course of treatment. Patients whose cancer cells are positive for HER2/neu have more aggressive disease and may be treated with trastuzumab, a monoclonal antibody that targets this protein.

Breast cancer may be one of the oldest known forms of cancer tumors in humans. The oldest description of cancer was discovered in Egypt and dates back to approximately 1600 BC. The Edwin Smith Papyrus describes 8 cases of tumors or ulcers of the breast that were treated by cauterization.The writing says about the disease, "There is no treatment." For centuries, physicians described similar cases in their practises, with the same sad conclusion. It wasn't until doctors achieved greater understanding of the circulatory system in the 17th century that they could establish a link between breast cancer and the lymph nodes in the armpit. The French surgeon Jean Louis Petit (1674-1750) and later the Scottish surgeon Benjamin Bell (1749-1806) were the first to remove the lymph nodes, breast tissue, and underlying chest muscle. Their successful work was carried on by William Stewart Halsted who started performing mastectomies in 1882. He became known for his Halsted radical mastectomy, a surgical procedure that remained popular up to the 1970s.

No comments: